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SUMMARY 

The standard method of analyzing fuselage rings has 
been known for some time to be considerably in error when 
the rings are flexible, as is usually true of secondary 
rings in large fuselages.  In order to provide a basis 
for a more accurate analysis, strain measurements were 
made on a series of circular cylinders with reinforcing 
rings, subjected to concentrated loads, in which the 
bending stiffness of the rings was varied systematically 
over a wide range. The results are presented and compared 
with the results obtained by theoretical methods. A 
method proposed by N. J. Hoff for analyzing rings sub- 
jected to vertical loads, extended in the present paper 
to cover all basic cases, was found to give satisfactory 
agreement with the test results. A method proposed by 
YJignot, Combs, and Ensrud was found to be considerably 
in error when used in the originally published form. A 
modification of this method was developed with the rela- 
tive stiffness parameter redefined, and the accuracy of 
the method was thereby improved appreciably. This modi- 
fied method, although less accurate than the method of 
Hoff, retains the advantage offered in the original 
method of Vlignot, Combs, and Ensrud of greatly reducing 
the time of analysis through the use of graphs. 

INTRODUCTION 

The so-called secondary rings in fuselage shells are 
usually analyzed on the basis of the assumption that the 
shear stresses in the skin which balance the load applied 
to the ring are distributed in accordance with the 
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standard engineering theory of bending. For a radial 
load applied to a ring in a shell of circular cross sec- 
.tion, for Instance, this theory gives a shear stress that 
is zero at the load and Increases to a maximum at the 
neutral axis 90° fron the load.  It has been recognized 
for some time, however, that this "basic assumption may 
not agree very well with the facts. The secondary rings 
are relatively flexible, and Intuition alone is suffi- 
cient to Indicate that a concentrated load applied to a 
flexible ring will cause local concentrations of stress 
near the load. Some designers consequently assume a 
triangular distribution of the skin shears; others, a 
uniform distribution, which is between the triangular 
distribution and that given by the standard theory. This 
uncertainty about the distribution of the shear stresses 
causes a corresponding uncertainty in the calculation of 
the maximum shear stresses in the skin.  In addition, it 
causes an even greater uncertainty In the calculation of 
the bending moments in the rings. Strain measurements on 
the rings of actual large fuselages have shown ring bending 
stresses that were only a small fraction (less than one- 
fifth) of the values calculated by the standard method. 

The investigation reported herein was undertaken in 
order to provide a more secure basis for the analysis of 
rings. Systematic strain measurements were made on a 
number of cylinders having rings with widely differing 
flexibilities and were compared with the analytical 
results obtained from two theories. The theories were 
extended to increase their usefulness or modified to 
increase their accuracy. 

SYMBOLS 

A, B coefficients defined In table i|. 

C,  D Fourier coefficients for distributed load 

E Young's modulus,  psl 

0 shear modulus,  psi 

H     axial force in ring, pounds 

1 moment of Inertia of cross section, Inches^- 

K     shear-stiffness constant used in reference 3 
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L     spacing of rings, inches (note that in equations (3), 
-- (k-),  and. (5), the. symbols .L . and,. L0 have 

special meanings and definitions discussed in 
connection with these' equations) 

M     bending moment in ring, inch-pounds 

F     radial load, pounds 

Q static moment about neutral axis of cross-sectional 
area lying between extreme fiber and plane under 
consideration 

R radius of cylinder 

T tangential force acting on ring, pounds 

U internal work, inch-pounds 

V shear' force, pounds 

CJJ coefficient of bending moment in ring  (M/PR) ar(yifFR) 

Cq coefficient of shear flow in skin  (qR/P) 

a, b  Fourier coefficients for CM» Cq,  and cr 

d     relative stiffness parameter used in reference 3; 
see equations (2), (Ij.), and (J+a) for discussion 
and definition 

i general number of bay or ring 

n general number of Fourier coefficient 

q shear flow (running shear), pounds per inch 

t thickness of skin, inches 

t1    thickness of all material carrying bending stresses 
in cylinder if uniformly distributed around 
perimeter, inches 

x     distance from tip of cylinder, inches 

v     shear strain 

o     longitudinal normal stress in skin, psi 
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T     shear stress In skin,- psi 

cp     angular distance of given point on ring from point 
of application of concentrated load 

Subscript: 

R     rigid 

TEST SPECIMENS AND PROCEDURES 

Test specimens.- The test specimens were four cir- 
cular cylinders of 21+S-T aluminum alloy reinforced by 
four equally spaced rings. The main dimensions are given 
in table 1. Cylinders 1, 2, and 3 formed a series in 
which all dimensions were nominally equal except the 
moments of inertia of the rings, which were varied 
approximately as 1:10s 100. Cylinders la, lb,, and lc 
were modifications of cylinder 1. Cylinder lj. had rings 
of the same cross section as cylinder 2 but twice the 
skin thickness,  pertinent details of construction are 
shown in figures 1 and 2.  It will be noted that the 
cross-sections of the rings were made symmetrical about 
the skin in order to avoid consideration of the amount 
of skin working with the rings. 

Test procedures.- The main tests consisted in 
applying a radial load to each ring in turn and measuring 
the bending stresses in the loaded ring as well as in the 
two adjacent rings. Shear stresses were measured in the 
skin adjacent to the tip ring and to the middle ring. In 
one test, a tangential load was applied to the tip ring 
of a shortened cylinder.  On cylinder 1, the radial load 
was outward and was- produced by dead weights.  On all 
other cylinders, the radial load was inward and was pro- 
duced by a hydraulic Jack used in conjunction with a 
dynamometer accurate to about 1/2 percent. Careful check 
tests made on cylinder 1 with both methods of loading 
showed no measurable difference, as was expected. 

The bending stresses in the rings were computed from 
measurements with Baldwin-Southwark SR-ij. electric strain 
gages, types A-l and A-5 (gage lengths 13/l6 and 1/2 inch, 
respectively). The shear stresses in the skin were com- 
puted from measurements with Baldwin-Southwark SR-ij. elec- 
tric gage rosettes, type AR-1. All gages were used in 
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pairs back-to-baok. For converting strains to stresses, 

\ Young' s ""modulus was taken as 10*& x- lO^-ksi and- the shear 

modulus as lj..00 x 10^ ksi. 

Prom preliminary readings of the gages near the 
point of load application, an estimate was made of the 
load necessary to produce a maximum stress of about 
20 ksi in the ring.  Hi the actual test', the chosen load 
was applied in five equal increments. Load-strain plots 
were made for the gages near the load and for all rosettes, 
It was found that all points except.the one at zero load 
fell very close to a straight line in each case; the 
deviation of the zero load point from the straight line 
was never larger than about 1 x 10 •'. The strain readings 
are believed to be accurate to better than 2 percent in 
all cases. 

METHODS OF ANALYSIS 

Standard method.- The analysis of fuselage rings is 
usually based on the assumption that the skin shears 
balancing the applied loads are distributed in accordance 
with the elementary theories of structures.  In the spe- 
cific case of a radial load, the skin shears are assumed 
to follow the familiar Vvj/l formula, which gives for 
the circular cylinder 

p 
Tt = q = ^ sin <p (1) 

When the skin shears have been computed by formula (1), 
they may be considered as external loads applied to the 
ring, and the ring can be analyzed by any applicable 
method of dealing with statically indeterminate structures 
For a number of basic cases that are encountered fre- 
quently, the results of such analyses have been published 
in the form of tables or graphs of coefficients; graphs 
for the circular ring with a radial load have been given, 
for- instance, in reference 1. Tables and graphs of this 
kind are of very material aid in reducing the labor of 
•analysis. 
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Hoff's method.- The use of formula (1) for computing 
the skin shears Implies the assumption that the stiffness 
of the ring is very large compared with the stiffness of 
the skin. Secondary fuselage rings, however, are often 
relatively flexible and deform to such an extent that the 
shear stresses in the supporting skin are altered; the 
standard method of analysis consequently becomes inaccu- 
rate. A more precise method of analysis must take into 
account the interaction between a flexible ring and the 
supporting skin.  One solution of this problem was given 
by Hoff in reference 2. Hoff considered the action of a 
circular cylinder, cantilevered from a rigid base, with 
two equal vertical forces equidistant from the vertical 
diameter applied to the tip ring. He assumed that the 
important stresses are the bending stresses in the ring, 
the shear stresses in the skin, and the longitudinal 
stresses in the skin, including stringers if present. 
All three of these stress systems were expressed by 
related Fourier series, and the coefficients of the 
Fourier series were obtained by the principle of Least 
Work. An extension of Hofffs method to the cases of a 
radial load, a tangential load, or a moment load applied 
at any ring is given in the appendix. 

Hoff's method gives a fairly complete and entirely 
rational answer to the problem.  The slight lack of 
completeness resulting from the simplifying assumptions 
is unlikely to be of practical importance.  More serious 
is the objection that the method requires computations 
that are very tedious, at least compared with the 
standard method. 

Method of ffignot. Combs, and Ensrud.- The most essen- 
tial features of the method of Wignot, Combs, and Ensrud 
(reference 3) z&J  DQ described briefly as follows.  Only 
the ring directly subjected to an external load was 
assumed to be affected. The shear stress in the skin 
adjacent to this ring was assumed to be proportional to 
the tangential deflection of the ring with respect to a 
fictitious ring some distance away that does not deform. 
On the basis of these assumptions, a differential equation 
for the bending moments in the ring was derived and solved. 
The final results were presented in the form of graphs as 
functions of a parameter d that relates the shear stiff- 
ness K of the skin to the bending stiffness El of the 
ring by means of the expression 

d=# (2) 
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The curves of Wise (reference 1) computed by the standard 
method appear on these graphs as the limiting case of 
rigid rings' "or d'.'- "0'."" "   

The method has the very desirable feature of sim- 
plicity of application; the analysis by means of the 
graphs given is essentially as simple as the analysis by 
the standard method with the aid of the graphs of refer- 
ence 1.  it has, however, two obvious defects: one is 
that It gives no stresses in the rings adjacent to the 
loaded ring, and these stresses may be of appreciable 
magnitude; the other Is that the theory leaves the 
numerical value of d indeterminate, because it does not 
contain any method for deriving the value of K which 
appears in expression (2).  It is stated in reference 3 

"The evaluation of d depends upon the accurate 
determination of K, for which further development, 
supplemented by tests, is clearly needed." 

Pending such development, this reference suggests that 

"K may be approximated as 

(5) 

where L is the distance along the shell to a 
section which is not distorted from a circle." 

With this approximation for K,  the expression for d 
becomes 

d = 2E£ (k) 
EIL w/ 

This expression, however, still does not constitute 
the solution of the problem of determining d, because 
the theory itself gives no clue as to the magnitude of L. 
In reference 3» this difficulty was overcome by making an 
assumption as followsi 

"R/t IS assumed to be never less than unity . . . 
This approximation for K seems Justified for any 
large fuselage comparable with that of the Lockheed 
Constellation or Boeing Model XB-29 since it gives 
good test agreement for those airplanes." 

Strictly speaking, of course, the inequality £• = 1 
L 

does not define L. The next expression given in refer- 
ence 3 indicates, however, that R/L was actually 
assumed to be equal to unity and with this assumption 
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expression (k.)  defines the relative stiffness parameter d 
as 

d = -gj- (V) 

A detailed comparison of the ring theory as developed 
in reference 3 reveals that it is the limiting case of the 
theory of reference 2, in which only one ring Is con- 
sidered and the stringers reinforcing the shell are 
assumed to be infinitely stiff. The assumption of rigid 
stringers makes it possible to express the shear stresses 
as proportional to the tangential deflections of the ring. 
In cylinders of practical proportions, however, the 
deformations of the stringers have a large Influence in 
defining the shear stresses in the akin and in general 
tend to decrease them. The smaller shear stresses result 
in larger maximum bending moments in the ring. 

Modified method of reference 5.- The speed with 
which an analysis can be made by means of the graphs in 
reference 3 makes this method highly desirable in prac- 
tical applications. The objection that the method gives 
no stresses in the rings adjacent to the loaded ring 
could perhaps be overcome sufficiently to satisfy the 
demands of practical stress analysis by some empirical 
or semiempirical method. A preliminary comparison of the 
test results obtained in the present Investigation with 
the results obtained by use of reference 3 showed, however, 
a lack of agreement that supported the objections to the 
assumptions of this theory mentioned In the last paragraph 
of the preceding section. The statement In reference 3 
that there was good test agreement for two large airplanes 
could not be checked because the test evidence was not 
presented.  The good test agreement might have been 
achieved in spite of the defects of the theory by use of 
an Incorrect amount of skin working with the ring. Very 
little is known at present about the amount of skin 
working with an actual fuselage ring and consideration of 
this factor might have an appreciable effect on the calcu- 
lation of the stresses.  In the present investigation, 
this difficulty was not encountered because the rings 
were symmetrical about the skin. 

Further study of the test results presented herein 
and of the graphs of reference 3 showed that it was 
generally possible to match any experimental curve with 
a curve from the proper graph. This observation led to 



NACA ARR No, L5H23 

the thought that closer correlation between test and cal- 
culation, might be achieved if the method of determining d 
were modified.  Such a modification would be in line with 
the remark in reference 3 quoted previously that "further 
development, supplemented by tests, is clearly needed." 
On the basis of general physical considerations, it was 
deoided to retain expression (ij.) for determining d but, 
instead of assuming L to be equal to R, to use a 
value of L defined by 

\  Et R*V 
L = L0(l + ~r

:T] (5) 

In this expression,  LQ is the distance from the loaded 
ring to the actual rigid base,, and t'  is the thickness 
of a fictitious "stringer-skin" with a cross-sectional 
area equal to the sum of the stringer areas and the part 
of the skin area that is effective in resisting longi- 
tudinal stresses. 

RESULTS AND. DISCUSSION 

General remarks.- The.results, of the investigation 
are presented in figures 3 through 30 in the form of 
plots of moment coefficient or. skin shear coefficient 
against developed perimeter of the cylinder. Because of 
the symmetry of the.structure, only one-half of the 
perimeter needed to be shown. For the moment coefficients, 
each test point shown represents tbe average -of the two 
pointa taken in the left and right side of the cylinder; 
the two corresponding points always agreed so closely 
that it was impractical to show them separately. For the 
shear coefficients individual test points -are shown. 
Computed curves are shown for three of the methods dis» 
cussed under "Methods of Analysis:11 the standard method, 
Hoff *s method (extended where necessary), and the modified 
method of reference 3*  No curves are shown for the unmodi- 
fied method of reference 3 because the agreement with the 
experimental data is very poor compared with the results 
obtained by the modified method or by Hoff »s method.  On 
all figures showing data on cylinders 1, la,, lb, and lo, 
the load is shown acting inward although it was actually 
acting outward as- discussed in the section "Test Proce- 
dures." This, change was made-In order..to have all results 
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similarly presented without being In conflict with the 
sign conventions given In the appendix. The change should 
not he objectionable because the check tests showed no 
difference between an inward-acting and an outward-acting 
load.  (See section on "Test Speolmens and Procedures.11) 

Bendlng-moment coefficient.- The bending-moment 
coefficient CJJ shown in figures 3 to 21 is defined 
by the equation 

M = CJJPR (6) 

Inspection of the figures shows that the curves computed 
by Hoff's method with six Fourier coefficients are, on 
the whole, in very satisfactory agreement with the experi- 
mental results if the immediate vicinity of the load is 
disregarded temporarily. .The modified method of refer- 
ence 3 shows poorer agreement with the test data than 
Hoff's method in some cases (note, for instance, magni- 
tude and location of the secondary maximum on figures 7> 
11, and 15). 

Because the curves for the tests with radial load 
are very steep in the neighborhood of the maximum moment 
at the load, it is difficult to make comparisons on small- 
scale figures. A comparison in tabular form is therefore 
provided in table 2 for these tests. The experimental 
values of maximum Cjj given in this table were obtained 
from the curves faired through the experimental points 
and extrapolated to the position of the load. The steep- 
ness of the curves combined with the scatter of the test 
points results in some uncertainty about the maximum 
values of C«. Every possible effort was made to reduce 
this uncertainty by careful choice of scales and accurate 
plotting, and it is believed that the maximum values of 
experimental CM are accurate to within ±5 percent. 

If the experimental values of maximum CJJ are 
assumed to be accurate, the errors by Hoff's method range 
from 20 percent unconservative to 7 percent conservative 
and the errors by the modified method of reference 3 from 
20 percent unconservative to 18 percent conservative. 
The moment coefficients computed by the standard theory 
are more than three times as high as the experimental 
values in the worst case; the coefficients computed by 
the unmodified method of reference 3 °n the other hand, 
are as low as one-half of the experimental values. 
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The results of the test made with a tangential load 
are shown in figure 22. The agreement-withHoff's theory 
and with the modified theory of reference 3 Is again 
quite satisfactory. 

No tests were made with a concentrated moment load. 
Inspection of the theoretical curves for this loading 
case shows that the moment decreases very rapidly with 
increasing distance from the load; and the experimental 
check is consequently very sensitive to small errors in 
looation of the gage or of the concentrated moment. Fur- 
thermore, it is very difficult to introduce a moment in 
truly concentrated form.  Inspection of the moment curves 
given in reference 3 led to the conclusion that the 
probable experimental errors would obscure the effect of 
ring flexibility to such an extent that the test would 
not be worth while. 

The theory indicates that the bending-moment coeffi- 
cient in an actual structure is always less than that 
given by the standard elementary theory.  In a qualitative 
way, it may be stated that this coefficient approaches 
that given by the standard theory as the stiffness of the 
ring relative to the surrounding part of the shell 
increases. Experimental results bear out this theo- 
retical conclusion. A comparison of the experimental 
coefficients in table 2 shows, for instance, that the 
loaded tip rings (ring 1) of cylinders 1, 2, and 3 have 
consecutively higher coefficients because the moments of 
Inertia Increase In this order.  Similarly, the coeffi- 
cient for the tip ring of cylinder 1±  is less than that 
for the rip ring of cylinder 2, because cylinder Ij. has 
the same size ring but a thicker skin than cylinder 2; 
relative to the surrounding structure, then, the ring In 
oylinder \\.  Is more flexible than that In cylinder 2. 
Again, for any given cylinder the maximum moment coeffi- 
cient decreases as the load is moved closer to the root 
of the cylinder, because the region of the shell nearer 
the root is stiffer than the region farther away from the 
root, and a given ring is therefore relatively more 
flexible if it Is located close to the root. The highest 
of all moment coefficients was therefore found on the tip 
ring of cylinder 3» which had the st if fest rings. The 
value of the experimental moment coefficient for this 
case was only 3 percent below the standard value of 0.239« 
This result indicates that the stresses in rings of 
practical proportions may approach quite closely the 
values predicted by the standard theory; however, the 
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bending stiffness of this ring is probably representative 
of main rather than secondary rings. 

Figures 3 through 22 may be used to obtain quickly 
some idea of the stresses experienced by unloaded rings 
located near a loaded ring. The faot that such stresses 
exist is well known. Not so well known appears to be 
the necessary corollary that, if several adjacent rings 
are loaded simultaneously, the stress conditions in the 
center of the group approach the conditions assumed by 
the standard theory; that is, the ring bending stresses 
are higher and the skin shear stresses lower than they 
are when only one rin£ is loaded at a time. Some tests 
were made with loads applied simultaneously to three rings, 
and the stresses were found to agree within the experi- 
mental error with the stresses predicted by superposing 
the results obtained with individual load application. 

Skin shear coefficients.- The skin shear coeffi- 
cients Cq shown in figures 23 to 30 are defined by the 
equation 

q = o„| (.7) 
The agreement between the experimental values and the 
curves calculated by Eoff's theory with six to twelve 
Fourier coefficients is again quite good except iri the 
vicinity of the maximum, where the agreement is somewhat 
poorer than for the moment coefficients. A comparison 
of the maximum values of Cq is given in table 3» The 
experimental values of Cq given in this tabl© were 
obtained by fairing a curve through the experimental 
points in the vicinity of the maximum, the curve computed 
by Hoff's method being used as an aid in fairing where 
necessary. 

It may be noted from the figures and from table 3 
that the standard theory is generally more seriously in 
error for the skin shear stresses than for the ring 
bending moments.  On cylinder 3* for instance, which has 
the stiffest rings, the maximum bending moment measured 
was 97 percent of the value predicted by the standard 
theory; the maximum measured shear stress on this cylinder, 
however, was 155 percent of the value predicted by the 
standard theory. In cylinder 1 v/ith the most flexible rings, 
the bending moment was 32 percent of the value predicted by 
the standard theory, while the maximum shear stress in the 
same cylinder was 533 percent of the value predicted by 
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the standard theory. A study of figures 23 to 30 also 
shows that, the standard theory ...Is, very misleading In that 
the location of the maximum shear stress" is given as 9O0 

from the load, while It is actually located somewhere 
between 15 and 1^5° from the load. 

CONCLUSIONS 

From the comparisons presented of experimental data 
and calculated results, obtained by several methods, of 
the bending stresses in circular fuselage rings and of 
the shear stresses in the skin between the rings, the 
following conclusions are drawn: 

1. The maximum bending moments In the rings are less 
and the maximum skin shears are more than those predicted 
by the standard theory which assumes, In effect, rigid 
rings.  In the stlffest rings tested, the maximum bending 
stresses were 97 percent of those predicted by the 
standard theory; in the most flexible rings they were 
only 32 percent. Corresponding values for the shear 
stresses In the skin were 155 percent and 535 percent, 
respectively. The maximum shear stresses occur, very 
roughly, 30° from a radial load Instead of 9°° &a pre- 
dicted by the standard theory. 

2. The method of Wignot, Combs, and Ensrud used in 
its original form may give large errors opposite In sign 
to those of the standard method. 

3- The method of Hoff, extended where necessary, 
gives satisfactory agreement with the test results in 
most cases. 

I4.. The method of Wignot, Combs, and Ensrud modified 
by redefining the "relative stiffness parameter" used by 
these authors gives somewhat less accuracy than Hoff's 
method but offers a considerable saving in time by the 
use of graphs. 
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Attention is called to the fact that the stress con- 
ditions resulting «ben a number of adjacent, rings are 
loaded in a similar manner approach those defined by the 
standard theory. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va. 
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APPENDIX 

THEORETICAL FORMULAS 

Tho good agreement obtained between the experimen- 
tally determined moments in a flexible akin-supported 
ring witn a radial load and the theory developed by Hoff 
in reference 2 justified the extension of the theory to 
other types of loadings. Basically, only three types of 
load need be considered in order to construct any load 
distribution; namely, the concentrated radial force, the 
concentrated tangential force, and the concentrated 
moment. The solution for the stresses caused by the con- 
centrated radial load oan be obtained as a limiting case 
of the solution of reference 2 but is given herein for 
the sake of completeness and unity of presentation.  New 
solutions are developed for the stresses caused by a 
tangential force as well as by a concentrated moment. 

Basic Assumptions and Theory 

The theory used herein defines the stress distri- 
bution in a circular cylinder stiffened in the circum- 
ferential direction by rings and in the longitudinal 
direction by stringers. The cylinder is cantilevered 
from a rigid support.  It is assumed that the shear flow 
in each sheet bay between rings does not vary in the 
longitudinal direction but may vary in the circumferential 
direction. Whatever material in the cross section of the 
cylinder is capable of resisting bending of the cylinder 
as a cantilever beam is assumed spread around the cylinder 
in a fictitious stringer sheet of thickness t1. Each 
reinforcing ring is of constant moment of inertia I and 
is capable of resisting only forces in its own plane. 
The notation used in numbering the sheet bays and rings 
and the positive directions of forces, moments, and 
stresses are given in figure 31. 

On the basis of the assumptions made the shear 
flow q in the ith bay can, for any loading, be expressed 
as 

(Al) 



l6 • NACA ARR No. L5H23 

in which qR represents the shoar flow that is usually 
calculated on the basis of rigid rings and the two trigo- 
nometric series represent statically self-balancing shear 
flows. These self-balancing shear flows are also con- 
sistent with a self-balancing set of normal stresses in 
the stringer sheet.  Only the sine series occurs if a 
symmetrical load is applied and only the cosine series 
occurs if the loading is antisymmetrical. The coeffi- 
cients aln and bln are to be defined by a minimum of 
strain energy of the entire structure. 

The moments, shear forces, and tangential force» in 
the reinforcing rings that are consistent with the shear 
flows in the sheet bays adjacent to rings and that also 
satisfy the conditions of continuity of the rings are: 

M^Mft+Ray^'^-^cosncp 
^-  n(n2 - 1) 

. R2ybin-b(l-l?nflljin<p 

V     n(n2 - 1) 

V1=V^  .Ryain-*(1.1)nsin 
1        F L (n2  -  1) 

2 
00 

ncp 
•^ - 1) 

blr,    -    b| 
- R V1* Y^1-1?*1 cos n<p (A3) 

<§-        (n2 - 1) 

Hi = % + A "fr1" " a("1?n)   coa B, 
^- (nr - 1) 

.   .Rf-°(»m;»{i-i?n) 3 (Ak) 

The stringer sheet stresses can be obtained from 
the shear flov/s and, because these stresses vary linearly 
along any cylindrical element,  need only be defined at 



NACA ARR No. L5H2J 17 

the rings.  If the stresses at the first ring are assumed 
to be zero, the stringer sheet stresses, at.the l*ft-ring 
are 

°1 "aR + RibTTfln1! + a2nI2 + ••• ft(i-l)nL(i-l)) OOB nCp 

CD 

" R^S^1*1,1 + ^^ + •" ^l-Dn^l-l)) 8ln n(P <A5) 

vjhere oR Is the stress given by the simple engineering 
theory of the bending of the cylinder. 

If the total strain energy of the structure Is 
minimized with respect to the coefficients of the terms 
of the series, sets of simultaneous equations will be 
obtained for the coefficients.  (See reference 2.) A 
set of simultaneous equations will result for each value 
of n for the coefficient a^ and a separate set for 
each value of n for the coefficient bj»!« Each set of 
equations will contain as many equations as there are 
bays. 

Concentrated Radial Force 

If a radial force  P Is applied to any ring of the 
cylinder at the location <p = 0°,  the shear flow q In 
the 1th bay, when the ltn bay Is between the loaded ring 
and the root, Is 

OB 

q,   = ~£- sin <p + s &±n s**1 zwp (A6) 
1 TTR • 4p 

and, when the ltn bay Is between the tip and the loaded 
ring, Is simply 

(BB 

q^ =^_ain 
sln W (A6a) 
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The moments, shear forces, and tangential forces in 
the loaded ring are 

^ „ »n + 2«S_ (w . «p, 8ln J + ^"(^ OOB n* (A7) 

vi" srlrP-(ff - »> °08 *| - R?ai?n2 !(l)1?n 8ln nCP     (AB) 

% - -g^p -  cp)  Bin  cp+ |- oos <p| + BY** **• 2 V'W  cos xup (A9) 
2 

and If the 1th ring Is unloaded, only the series terms 
of the equations occur. 

If the assumption Is made that the cylinder Is of 
constant cross-section and all rings have the same moment 
of Inertia and are equally spaced, minimizing the strain 
energy In the structure results In a simple set of 
equations defining the coefficients a.in- For Instance, 
If a cylinder with six rings and bays Is loaded at the 
second ring, the second equation of the set of six equa- 
tions is obtained by setting equal to zero the partial 
derivative of the total strain energy with respect 
to a2n« This procedure yields 

T^2- - (27n2 - AY)ain + (2&i2 + 2AY + BW 
°a2n 

+ (21n2 - AY)a3n + 15^ + 9^ • 3*^ • ^& - 0 

The notation used is  that of reference 2;  that is 

6R6t« 
A = 

U? 
6Et'R2 

B =  2~ 
GtL 

r " n2(n2 - l)2 
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The general form of the six aquations la given In table \\.t 
but the load term PAYTT/TTR is placed on the right-hand 
side of the equation. The load term also occurs with a 
negative sign in the second equation and with a positive 
sign in the first equation.  If the radial load had been 
applied In some ring other than ring 2, the load term 
would have appeared with the negative sign on the right- 
hand side of the equation having the same number as the 
loaded ring and with a positive sign on the right-hand 
side of the equation preceding it.  Zeros would have 
appeared on the right-hand side of the other equations. 

Concentrated Tangential Force 

If a tangential force T is applied to any ring of 
the cylinder at the location cp = 0° the shear flow q 
in the i"1 bay between the loaded ring and the root is 

T /l \       T~" q^ - -zrtö" +• cos cpj +   >bln cos ncp ((A10) 

the  shear flow may be expressed as 
and if the  1th bay is between the loaded ring and the tip 

q.   =   y_t>in CO3 nflp (AlOa) 
2 

If the itn ring Is loaded, the moments, shear forces 
and tangential forces are 

00 

1L  - pTu - <p)(l - oca ffl)  - \ sin «^ - R2Vbln " b(1"1?n Bin n<p '(.All) 2ffL 2 J <y-    n(n2 - 1) 

^-JLJ^-cp)  8ln(p -Sop. ij   - RYbln
n; \^

n OOB n<p (A12) 
2 

00 

% - ifä±- (• - CP) OOB <p] - Rp^Y^^Bin n<p (A15) 
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For the rings not loaded the moments are expressed only 
in terms of the series.  If the assumption is again made 
that the cylinder has six bays and is of constant cross 
section and that the rings have equal stiffness and are 
equally spaced, the sets of equations defining the coftf- 
ficients b,  are the same as those defining the coeffi- 
cients a^n for the radial load, except that the value 
of the load term on the right-hand side of the equation 
is now TAY/TTR. The load term appears with the negative 
sign on the right-hand side of the equation having the 
same number as the loaded ring, and with the positive 
sign in the equation preceding it. Zeros occur in the 
right-hand side of all other equations. 

Concentrated Moment 

If a concentrated moment MQ is applied to any 
ring of the cylinder, at the location q> = 0°, the shear 
flow in the itn bay ?;hen the bay is between the loaded 
ring and the root is 

M    -r2- 
qt = —-2_ + 2_ °in cos "V (A^ 

2TTR    2 ' 

and when the ith bay is between the tip and the loaded 
ring the shear flow is 

no 

Qi = V Din cos n<D (Allj-a) 

The moments, shear forces, and tangential forces in 
the loaded ring are 

co1 

M*  = öS lör - <p) - 2 sin <p"| - R2Y -iS-L-ÜÜE sin ncp      (A15 ) 1      dv L J Z_     n(n2-l) 
2 

CO 

V,   = --^2.(1 + 2 cos <p)   - RV   ^ "—LizilS cos ncp (Al6) 1        2TTR L.       n2  -  1 
2 

oo 

H< = .* si„ , - RYn(bl"n; \^  -la »• (A17) 

2 



NACA ARR NO. L5H23 21 

.... In the unloaded rings the moments and forces are 
given by the series expressions. "If a cylinder-of-con- 
stant cross section stiffened by six equally spaced rings 
of constant moment of inertia is considered; the set of 
equations given in table I4. applies again except that the 

MQAY . ? 
value of the load term is —*—[nr  - 1). The load term 

appears with the positive sign on the right-hand side of 
the equation having the same number as the loaded ring, 
and with the negative sign in the equation preceding it. 
Zeros occur on the right-hand side of all other equations. 

Rules for Writing Equations 

The left-hand side of the equations defining the 
coefficients a^n or b^n can be written for a cylinder 
of constant cross section having any number of bays 
between equally spaced rings of equal stiffness if the 
following features are observed in the scheme of equations 
in table i\..    All the elements lying along the main diagonal 
that runs from the upper left to the lower right-hand 
corner contain the term (2AY + B) except the one in the 
lower right-hand corner for which the coefficient of Ay 
is unity.  The elements to the left and right of the ele- 
ment on the main diagonal contain the term -Ay. All the 
elements contain the term n , the coefficients of which 
follow a simple pattern. The coefficients of n^ in the 
elements in the main diagonal start with 2 in the lower 
right-hand corner and increase by 6 in each element lying 
above and to the left. The coefficient of n^ in any 
element in the column above an element on the main diagonal 
or in the row to the left is one more than the coefficient 
of n^ in the element on the main diagonal. 

The right-hand side of the equations can be easily 
written as follows; For the equation bearing the same 
number as the loaded ring and the equation preceding it, 
the appropriate load term is written down as shown in 
table £}.. For all other equations, zeros are put down. 

It can be shown that the scheme of writing the equa- 
tions can also be used for the general loading case where 
any number of loads are acting on the ring. The load 
system is separated into a symmetrical and an 
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antisymmetrleal part, and the rigid-ring bending moments 
caused by the entire load system are represented by the 
series 

00 00 

MR =   2_Cn sin ncp  +   2_Dn cos ncp 
2 2 

where the Fourier coefficients    Cn    define the antisym- 
metrical part and the coefficients    D^    the symmetrical 
part of the moment.    The load term appearing in the scheme 
of equations of table Ij. is,  then,  for antisymmetrical 
loads 

'    0 Avnfag - 1) 

and for symmetrical loads, 

Avn(n2 - 1) 

• R* 

For the antisymmetrical loads the sign of the load 
term on the right-hand side of the equation with the same 
number as the loaded ring is opposite to that of Cn; 
for symmetrical loads the sign of the load term for the 
same equation is the same as that of DQ. 

Numerical Example 

Basic data.- The numerical example chosen is test 
cylinder 3 with a radial load applied at ring 3« The 
basic data are therefore (from table 1): 

Radius, R,  inches 15 
Spacing of rings, L,  Inches 15 
Thickness,  t = t',  inch 0.0320 
Moment of Inertia,  I,  inches^ O.357 

The value of G/E is taken as O.377. With these numerical 
values, the constants A and B appearing in table Ij. 
become: 

A = 18154 

B = 15.90 
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- De-terminatlon o£ Fourier, coefficients.-_. Because 
cylinder 3 has rather  stiff rings,  a few Fourier coeffi- 
cients give  sufficient accuracy.    For this numerical 
example,  the coefficients for    n = 2,  3,  and Ij.    will be 
determined. 

The cylinder has four bays, whereas table Ij. is  set 
up for  six bays.    The  left-hand sides of the equations 
are  therefore  obtained directly from table I4. by dropping 
the excess terms and retaining only the four rows and 
four columns appropriate to a four-bay cylinder,  starting 
in the  lower right-hand corner of the terms on the  left- 
hand side;  that  is, the first two columns and the two top 
rows  in table I4. are dropped,  and the remaining four 
columns and rows are renumbered from 1 to I4..    The right- 
hand sides  of the  equations  are  obtained by putting  the 
load terms  in the places appropriate  to the position of 
the  load.    The final general scheme for an arbitrary 
value  of    n    is  then: 

(20n2 + 2Ay + B)aln + (15n2 - Ay)a2n + 9n2a5n + Jn2*^ = 0 

(I5n2 - AY)aln + (ll^2 + 2AY +  B)&2n + (9n2 - Ay)«^ + 311^ = —^ 

9n2aln +  (9n2 - Ay)a2n +  (Bn2 + 2Ay +  B)a3n + (3n2 - Ayja^ = -Ejffi. 

3n^ala + 3n2a2n +  (3n2 - Ay)a5n +  (2n2 + Ay +  Bja^ = 0 

The  set of equations for determining the Fourier coeffi- 
cients    n = 2    is then obtained from this general scheme 
by setting    n = 2    and inserting the numerical values 
for    A,  B,     and    y.     The  sets  of equations for determining 
the Fourier coefficients    n = 3    and    n = l±    are then 
obtained in an analogous manner.    The three  sets of 
simultaneous equations are solved by any suitable method, 
for instance,  the Crout method  (reference I4.),  and the 
resulting Fourier coefficients are 

n In a2n a3n V 
2 
3 
if 

-0.0lj.820P/k 
.02036P/R 
.00622P/fc 

-o.i7368p/fe 
-.OQOUBPAI 

-.01899P/R 

0.2539^/k 
.O83IJ-8P/R 
,01902P/fc 

o.i67HP/te 
-.00992P/R 

-.00601P/R 
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De termination of moment and shear coefficients.- The 
moment coefficient CM is defined by 

°M " PR 
By the use of the expression (A7) the moment coefficient 
for ring i can be written as 

00 

RVain - a(l-l)n 
CM 

= CM + — >  ~ *— cos nqp "M  °MR  PZ_  n(n2 _ 1} 

The coefficient for the moment at the point of application 
of the load (qp = 0, 1 = 3)» for instance, becomes 

R  r^-n(n^ - 1) 

or, when terms after n = l\.    are neglected, 

c„ = .0.2387 + 
(0-2^ + °-17?7? cos 2(0°) 

+ (0.08?^Q.080^cos    (0O) + (0.01OQ + 0.01O0?cos4    0 

2k 6o 

= -0.1600 

The shear coefficient C„ is defined by 
R 

Cq = q- 

By the use of expression (Al) the coefficient for bay i 
can be written as 

OB 

°q = cqR + PX 
ain sin hq> 

2 

where the second subscript R again denotes the value 
for the rigid ring. The shear stress reaches its maximum 
value in bay 3 (I = 3) at about q> = kk-°.    The maximum 
shear coefficient is therefore given by 

!q = cqR
+'iIa3rislnn<p 
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or, numerically, If terms beyond . n = Ij. are dropped 

Cq = 0.2211 + O.2539 sin 2(i|2|.«>) + 0.083lj. sin 3(kk°) 

+' 0.0190 ain Ij-diV3) 

= O.5383 
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TABLE 1.- DIMENSIONS OP TEST CYLINDERS > 

JO 

Radius of Length of Spacing of Thickness of Moment öf 
4 MAV.4-   4   M 

as 
Cylinder cylinder 

R 
(in.) 

cylinder 

(in.) 

rings 
L 

(In.) 

skin 
t 

(in.) 

inertia 
of ring,    I 

(in.4) 

0 
• 

c 
cn 
s 

1 15 60 15 0.0322 0.00l|21 

la 15 60 30 .0322 .00li21 

lb 15 30 30 .0322 ,00lj21 

lc 15 15 15 .0322 ,00l|24 - 

2 15 60 15 .0320 .0I4.OOI 

3 15 6o 15 .0320 .35695 

4 15 60 15 .061+8 .04526 •1 

4a 15 45 15 .061+8 .04526 
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TABLE 2.- COMPARISONS OF THEORETICAL 

(X) (2) 

AND EXPERIMENTAL MAXIMUM BENDIHO MOMENT COEFFICIENTS 

(3) (4) (5) 
CD 

Cylinder Loaded 
ring 

CM 
Experimental 

°M 
Computed 

•0cording to 
reference 2 

d 
Computed 

according to 
reference 3 

CM 
Computed 

acoordlng to 
reference 3 

d 
Computed 

acoordlng to 
referenoe 3 

(modified) 

CM 
Computed 

acoordlng to 
reference 3 

(modified) 

CM 
Computed 

acoordlng to 
•tandard 
method 

1Ü 
(l) 

ill 
(1) 

ihl 
(i) (1) 

Radial load 
»    1 0.123 0.124 10,820 O.071 384.4 O.I24 0.239 1.01 O.58 1.01 1.94 

1 " 
.092 .095 10,820 .071 820.8 .109 1.03 • 77 1.18 2.60 

.083 .086 10,820 .071 2156 .092 1.04 .86 1.11 2.88 

. 4 .074 .076 10,820 .071 785a .075 1.03 .96 1.01 3.23 

la .128 .137 10,820 .071 384.4 .124 1.07 .55 .97 1.87 

lb .106 .108 10,820 .071 2156 .092 1.02 .67 .87 2.25 

lc .082 .086 10,820 .071 7858 .075 1.05 •87 •91 2.91 
*•     . 

.203 .172 1.132 .103 40.2 .181 .85 •51 .89 1.18 

2 < 
.166 .133 H32 .103 85.8 .157 .80 .62 •95 1.44 

.139 .118 1.132 .103 225.5 .135 .85 .74 •97 1.72 
w Zi .129 .104 1.132 .103 821.9 .109 .81 .80 .84 1.85 
—    - 

.233 .207 126.9 .147 4.51 .226 .89 .63 •97 1.03 

3 * 
.198 .167 126.9 .147 9.62 .216 •84 • 74 I.09 1.21 

.183 .160 126.9 .147 25.3 .195 .87 .80 1.07 1.31 

•» 4- .170 .147 126.9 .147 92.1 •155 .86 .86 .91 1.41 
•*   ^ .179 .159 2,026 .093 72.0 .163 .89 .52 •91 1.34 

4 < .143 .121 2,026 .093 153.6 .143 .85 • 65 1.00 1.67 

.132 .109 2,026 .093 403.6 • 123 .83 • 70 .93 1.81 

- U .122 .097 2,026 .093 1471 .098 V .80 .76 .80 1.96 
Tangential load 

4a 1 0.031 0.027 2,026 0.011            153.6 O.027 • 
-^—^—_^_ 

0.064 0.87 0.36 0.87 2.06 
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TABLE 3.- COMPARISONS BETWEEN THEORETICAL AND EXPERIMENTAL MAXIMUM SHEAR FLCW COEFFICIENTS FOR RADIAL LOAD 

(1) (2) (5) Ik) (5) 

Cylinder Loaded 
ring 

Measured 
bay 

cq 
Experimental 

Cq 
Computed 

according to 
reference 2 

Cq 
Computed 

according to 
reference 3 

Cq 
Computed 

according to 
reference 3 

(modified) 

Cq 
Computed 

according to 
standard 
method 

(2) 
(1) (1) 

M 
.(1) 

151 
(i) 

'1 1 1.21; 1.23 3.36 1.15 0.31 0.99 2.71 0.93 0.25 

1 -1 

3 

3 .81 .83 3.36 1.15 1.02 4.15 1.1+2 .38 

2 •3k .87 1.63 .92 •93 1.73 .98 .33 

J 3 1.65 1.57 1.73 1.05 •95 1.05 .(h .19 

"1 1 .78 .70 1.60 .60 .90 2.05 •77 40 

2 
1 

< 
3 

3 .37 .kz 1.60 .60 1.4 4.32 1.62 .8k 
2 • 55 47 .72 •kl .85 1.31 .75 .56 

-3 3 1.07 .92 .88 • 59 .86 .82 •55 .29 

'1 l 48 43 .85 .36 .90 1.77 .75 • 65 

3 
1 

< 
3 

3 .32 .3k .85 .36 I.06 2.66 1.12 .97 

2 .27 .25 .32 .16 •93 1.19 .59 1.15 

J 3 .51 .53 .52 • 57 l.Olj. 1.02 •75 .61 

"1 1 .90 .80 1.95 .70 .89 2.17 .78 .34 

k 
1 

< 
3 

3 48 
1 

.50 1.95 .70 1.04 I4..O6 146 .65 

2 .69 •55 .91 49 .80 1.32 .71 45 

.3 3 1.13 1.07 I.OU .62 V .95 .92 • 55 .27 

2 
> 
o 
> 
> 
S3 

O 

f 
CJl 
a: 
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TABLE Ij..-  SCHEME   OF EQUATIONS FOR  CYLINDER  OF SIX EQUAL BAYS  LOADED AT  SECOND RING 

O 

.   _  6R6t'      _        6Et'R2 

A —T   B =  —;  y 
IL5 GtL' 2  ' 

n2(n2 - 1)-J 

Left-hand aide Right-hand aide 

^\  Coeffiolenta 
\T    (i) 

Equation ^-^ 
number      ^^ 

aln *2n a3n V ft5n a6n (Load term) 

In 2n 3n V V >6n Radial Tan- 
gential Moment 

1 32n2 + 2Ay + B 27n2  - Ay 2 In2 15n2 9n2 3n2 PAyn/irR TAy/trR -IJoAytn2 -1)/TTR2 

2 27n2  - Ay 26n2 +2Ay + B 2In2  - Ay 15n2 9n2 3n2 -PAyn/irR -TAyAR M0Ay(n2 -l)/trR2 

3 2 In2 2 In2  - Ay 20n2+2Ay + B 15n2  - Ay 9n2 3n2 0 0 0 

k 15n2 15n2 15n2  - Ay ll+n2 + 2Ay + B 9n2 - Ay if 0 0 0 

5 9n2 9n2 9n2 9n2  - Ay 8n2 + 2Ay + B 3n2 - Ay 0 0 0 

6 5n2 3n2 3n2 3n2 3n2  - Ay 2n2  + Ay + B 0 0 0 

^•Coeffiolenta    a    apply to radial load;  coeffiolenta    b    to tangential or moment load. 

> 
o 
> 

> 
pa 
pa 

S5 
O 
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Figure I.—General    over-all   cylinder  dimensions. 
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Figure   2.—  Dimensions    of  rings   and  rivet   siz.es    for 

various   cylinders .    Rivet   spacing , I  inch . 
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Figure  3 . - Ring   bending —moment    coefficients   in   cylinder I   for 
radial   load ot   ring I . 
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Figure 4.- Ring   bending — moment   coefficients   in   cylinder I   for 
radial   load   at   ring   2. 
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Figure  5. ~   Ring   bending - moment   coefficients   in  cylinder  I   for 
radial    load   at   ring 3 . 
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Figure 6.- Ring   bending-moment   coefficients in cylinder I   for 
radial   load    at ring 4 . 
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Figure 7.- Ring   bending-moment    coefficients   in   cylinder la 
for   radial   load   a\   ring I . 
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Figure 8. Ring   bending - moment    coefficients   in   cylinder lb 
for   radial   load    at  ring  I . 
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Figure 9. Ring   bending - moment   coefficients   in   cylinder   Ic 
for   radial   load    at  ring   I . 
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Figure  10.- Ring   bending - moment   coefficients   in   cylinder 2. 
for   radial   load   at   ring  I. 
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Figure II.- Ring   bending-moment   coefficients   in   cylinder 2.   for 
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Figure  12..— Ring   bending-moment  coefficients   in cylinder 2  for 
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Figure 13.-   Ring    bending - moment   coefficients   in   cylinder 2 
for   radial   load   at   ring A. 
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Figure  14. - Ring   bending - moment   coefficients   in  cylinder   3   for 
radial    load     af    ring   I . 
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Figure 15.- Ring   bending-moment   coefficients   in   cylinder 3   for 
radial    load    at    ring  2 . 
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Figure  16.-Ring  bending-moment  coefficients   in  cylinder 3   for 
radial    load    at   ring  3 . 
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Figure  17. — Ring bending - moment   coefficients   in   cylinder 3 
for    radial   load    at    ring  4 . 
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Figure 19.— Ring   bending-moment   coefficient5   in   cylinder 4   for 
radial    load   at   ring   2.  . 
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Figure  2.0. -  Ring   bending—moment   coefficients   in  cylinder 4 
for   radial    load   at  ring   3 . 
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Figure. 21. —  Ring    bending - moment    coefficients   in   cylinder 4 

for   radial    load    at    ring   A   . 
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Figure 24. ~ Shear-flow   coefficients   in   cylinder I   for   radial 
load   at   ring   3. 
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Figure   25.- Shear-flow   coefficients   in  cylinder 2  for   radial 
load    at   ring  I . 
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TABLE 1.- DIMENSIONS OF TEST CYLINDERS 

Cylinder 
Radius of 
cylinder 

R 

Length of 
cylinder 

Spacing of 
rings 

L 

Thickness of 
skin 

t 

Moment of 
inertia 

of ring,    I 
(in.&) (in.) (in.) (in.) (in.) 

1 15 60 15 

i 

0.0322 0.00l|21 

la 15 60 30 .0322 ,00li21 

lb 15 30 30 .0322. .00l|21 

lc 15 15 15 .0522 .00l|2lj. 

2 15 60 15 .0320 .Olj.001 

3 15 60 15 .0320 .35695 

k 15 60 15 .06^8 .0^526 

1»* 15 k5 15 .061+8 .OI1.526 

2 
> 
> 
> 
» 
as 
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c 
01 
se 
tvi 
w 
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TABXB 2.- 00KFARIS0B3 OF TBEOREtlOAL 

(1)        (2) 

AID BXFERZMBITAL MaXXMOIf BKHDI» KOKBK 00EFTICIEW8 

(3) (4)        (5) 
8 

Cylinder Loaded 
ring Rxperlmntal 

Gonputed 
aeoordlag to 
refereneo 2 

d 
Conputod 

aeoordlag to 
reference 3 

ON 
Ooaputed 

aeoordlag to 
referenoo 3 

d 
Counted 

aeoordlag to 
reference 3 

(nodifled) 

Ooaputed 
aooordlng to 
referenoe 3 

(•odlfled) 

OoBouted 
aeoordlng to 

standard 
•ethod 

HI 
(i) 

ill 
(1) 

ikl 
(i) (1) 

Radial load 
• 1 0.123 0.124 10,820 0.071 384.4 O.I24 0.239 1.01 0.58 1.01 1.94 

1 
2 

< .092 .095 10,820 .071 820.8 .109 1.03 •77 1.18 2.60 

3 .083 .086 10,820 .071 2156 .092 1.04 .86 1.11 2.88 

.4 .0* .076 10,820 .071 7858 .075 1.03 .96 1.01 3.23 

la 1 .128 .137 10,820 .071 384.4 .124 1.07 .55 .97 I.87 

•      lb 1 .106 .108 10,820 .071 2l$6 .092 1.02 .67 .87 2.25 

lo 1 .082 .086 10,820 .071 7838 .075 1.03 .87 •91 2.91 

• 1 .203 .172 1,132 .103 40.2 .181 .85 •51 .89 1.18 

2 
2 .166 .133 1*132 .103 85.8 .157 .80 .62 .95 1.44 
3 .139 .118 1,132 .103 225.5 .135 .85 •74 •97 1.72 

-4 .129 .104 1,132 .103 82I.9 .109< .81 .80 .84 1.85 

f1 .233 .207 126.9 .11*7 4.51 .226 .89 .63 .97 1.03 

3 ]• .198 .167 126.9 .147 9.62 .216 .84 .74 1.09 1.21 

> .183 .160 126.9 .147 25.3 .195 .87 .80 1.07 1.31 u .170 .11*7 126.9 .147 92.1 .155 .86 .86 .91 lJtl 

' i .179 .159 2,026 .093 72.0 .I69 .89 .52 .91 1.34 

4 
2 

< .143 .121 2,026 .093 153.6 .143 .85 .65 1.00 I.67 

3 .132 .109 2,026 .093 403.6 .123 .83 .70 .93 1.81 

.4 .122 .097 2,026 .093 1471 .098 V .80 .76 .60 I.96 
Tangential load 

Ua 1 O.O31 O.027 2,026 O.OU 153.6 0.027 • 0.064 0.87 O.36 0.87 2.06 
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TABLE 3.- COMPARISONS BETSEEN THEORETICAL AND EXPERIMENTAL MAXIMUM SHEAR FLOW COEFFICIENTS FOR RADIAL LOAD 

(1)        (2) (3) (U) (5) 

Cylinder Loaded 
ring 

Measured 
bay Experimental 

°q 
Computed 

aooordlng to 
reference 2 

°q 
Computed 

aooordlng to 
reference 3 

°q 
Computed 

aooordlng to 
reference 3 

(modified) 

°q 
Computed 

aooordlng to 
standard 
method 

(2) 
(1) 

121 
(i) 

Shi 
(i) 

1 

151 
(i) 

'1 1 1.21; 1.23 3.36 1.15 0.31 0.99 2.71 0.93 0.23 

m < 
3 .81 .83 3.36 1.15 1.02 4.15 1.1|2 .38 

1 
2 .94 .87 I.63 .92 •93 1.73 .98 .33 

1 
f 3 1.63 1.57 1.73 I.03 .95 1.03 .61* .19 
fml l .78 .70 I.60 .60 .90 2.05 •77 .40 

O < 
3 .37 .lt2 1.60 .60 l.l4 4-32 1.62 •8fc 

2 
2 .55 .47 .72 •Ul .85 1.31 •75 .56 

3 ' 3 1.07 .92 .88 .59 .86 .82 .55 .29 

"l l .1*8 .1*3 .85 .36 .90 1.77 .75 .65 

3 j 
3 .32 .34 .85 .36 1.06 2.66 1.12 .97 

< 
2 .27 .25 .32 .16 .93 1.19 • 59 1.15 

*• 3 .51 .53 .52 .37 1.04 1.02 •73 .61 
• • l .90 .80 1.95 .70 .89 2.17 .78 .34 

4 I1 3 

2 .69 

.50 

.55 
1.95 • 

.91 

.70 

.10 

1.04 

.80 

1;.06 

1.32 

1.46 

.71. 

.65 

.45 

3 3 1.13 I.07 1.04 .62 V .95 .92 •55 .27 
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TABEE k>- MHEUB OF EQJATI0H8 FOB OXLHDER OF SIX EQUAL B1TB LOADED AT 8E00KD HI» 

,      L      nV        ML*'*    „z^.^aj 

w 
o 

Left-hand aid« Right-hand aid« 

\ Ooefflolenta 

Equation ^v     • 
IMU&IOr           XV 

•la «2n "3n •4«a *5a "fa (Load tars) 

bla      . 
b2n b3a V % »fa Radial Tan- 

gential Hono&t 

1 JZi^ + aAY + B 27a2 -Ay 21n2 15n2 9a2 3a2 PAyaAR TAYAR -MOAYJ^-DAR2 

2 ÄTn2 - Ay 2fa2 + 2Ay + B 21B2 - Ay 15a2 9a2 3a2 
-FAraAR -TAYAR MoAYtnZ-DAB2 

3 23»? 21a2 - Ay 20B2+2*r + B 15a2 - AY 9a2 3a2 0 0 0 

U I*? 15a2 15B2 - AY lljn2+2AY+B 9a2 -AY 3a- 0 0 0 

5 9a2 9a2 9a2 9a2 -AY SD^+ZAY+B 3a2 -AY 0 0 0 

6 3a2 3a2. 3a2 3a2 
3a2 - AY- 2a2 + AY + B 0 0 0 

• 

^Coefficients a apply to radial load] ooefflolenta b to tangential or noaont load. 
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Figure 31.- Symbols and sign   convention used fn ring analysis. 

NATIONAL MMMRY 

> 
> 
> 
» 
SS 
o 

c- 
Ol 
SB 
w 



• TITLE: The Effect of Concentrated Loads on Flexible Rings In Circular Shells 

AUTHORS): Kuhn, Paul;  Dubcrg, John E.  and others 
ORIGINATING AGENCY: National Advisory Committee for Aeronautics, Washington, D. C. 
PUBLISHED BY:   (Same) 

OTO- 7B92 
REVISION   . 

(None) 
MIO. AOENCT NO. 

ntotoMNo AOCNCY i 

DOC OASS. COUNTtT 

Dec '45     I    Unclass. I      U. 5. 
lANOUAOi 

Eng. 60 
OUST ATIOHS 

tables, dlagrs. graphs 
ABSTRACT: 

Tests were conducted to determine bending stresses in circular fuselage rings and 
of shear stresses in the skin between the rings. Results of these tests were compared 
with results obtained by theoretical methods.   Maximum bending moments in the rings 
are less and maximum shears are more than those predicted by the standard theory 
which assumes rigid rings.  Maximum shear stresses occur 30° from a radial load 
instead of 90° as predicted by the standard theory. 

DISTRIBUTION:   Regnest copies of this report only from Originating Agency 
DIVISIONstress An-lysis -ind Structures (7) 
SECTION:' Structural Theory and Analysis 

Methods (2) 

ATI SHEET NO.: R-7-2-13  

SUBJECT HEADINGS: 
Structural members - Stress analysis (90*59) 

Afr Drcumooti DMIKMI, bitotligonco Dapaflamo 
Air MafoHoi CoracwnKI 

Ala. TICHNICAL INDUS Wright- otrortoa Afr Forco Bo» 
Dayton, Ohio 


